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Abstract 
Cognates are orthographically similar words in different languages that share the same 
etymology. Investigating cognates is valuable in fields such as historical linguistics, 
language acquisition, information retrieval, and machine translation, among many other. 
In this context, identifying false friends poses a challenge for automatic methods of 
cognate detection, as orthographic similarity is not sufficient to distinguish such word 
pairs. To this end, we evaluated seven different unsupervised vector-space models 
based on neural networks to detect cognates in general and to distinguish true cognates 
from false friends in a list of word pairs in English and Spanish. This variety of models 
allowed us to determine the impact of several factors on the quality of the results and 
the effectiveness of the models: language resources employed in model construction 
(e.g., text corpora, lexical associative networks, or both), cross-lingual alignment of 
semantic spaces, and meaning conflation in polysemous words. 

Keywords: cognate, false friend, word embedding, semantic similarity 

Resumen 
Los cognados son palabras ortográficamente similares en distintas lenguas que 
comparten la misma etimología. La investigación de los cognados es valiosa en ámbitos 
como la lingüística histórica, la adquisición de lenguas, la recuperación de información y 
la traducción automática, entre otros. En este contexto, la identificación de false friends 
supone un reto para los métodos automáticos de detección de cognados, ya que la 
similitud ortográfica no es suficiente para detectar estos pares de palabras. Con este fin, 
evaluamos siete modelos vectoriales-espaciales no supervisados diferentes basados en 
redes neuronales para detectar cognados y distinguir los cognados verdaderos de los 
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false friends a partir de una lista de pares de palabras en inglés y español. Esta variedad de 
modelos permitió determinar el impacto de varios factores en la calidad de los 
resultados y la eficacia de los modelos: los recursos lingüísticos empleados en la 
construcción del modelo (por ejemplo, corpus de textos, redes asociativas léxicas o 
ambos), la alineación interlingüística de los espacios semánticos y la fusión de 
significados en palabras polisémicas. 

Palabras clave: cognado, false friend, vectores semánticos, similitud semántica 
 

INTRODUCTION 
True cognates and false friends have been used in various research fields and 

applications. For example, an extensive list of false friends can be useful not only for 
foreign-language learners (Procter, 1995), but also for linguists that study language 
relatedness (Ng et al., 2010). Integrating a list of false friends into computer-assisted 
language learning (Frunza & Inkpen, 2007) or proofreading software (Miłkowski, 
2010) also has shown to be very useful. Moreover, the use of cognates accelerates the 
process of corpus alignment (Nazar, 2011), bilingual lexicon construction (Gurrutxaga 
et al., 2006) or machine translation (Kondrak et al., 2003) in natural language 
processing (NLP). In the last few years, research on true cognates and false friends 
continues to show an active interest in fields such as translation and second language 
acquisition (Hansen-Schirra et al., 2017; Otwinowska et al., 2020), where cognates and 
false friends can contribute to the problem of source language interference (i.e., 
negative transfer). However, as explained by Mitkov et al. (2007), obtaining a list of 
cognates and false friends is difficult, especially for poorly spoken languages. 

The compilation of such lists is a time-consuming and labour-intensive task. 
Therefore, the solution to this lexicographical bottleneck can be found in 
automatically identifying a large number of true cognates and false friends from lexical 
data. In this context, this research proposes a method for automatically recognising 
true cognates and false friends for a given pair of languages. In particular, the main 
contribution of this article is to assess the impact of three aspects of neural-network 
models (i.e., language resource type, cross-lingual embedding alignment, and meaning 
conflation) in the semantic-similarity stage of this task. Although the experiment is 
focused on English and Spanish words, the proposed method can be used for a 
variety of languages. 

The remainder of this article is organised as follows. Section 1 describes the most 
relevant works for this study. Then, section 2 provides an accurate account of the 
proposed research method. Subsequently, section 3 describes the experiment, whereas 
section 4 shows the results. After that, section 5 interprets the empirical evidence. 
Finally, we present our conclusions. 
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1. Definitions 

This section explains the main linguistic terms related to our research topic to 
clarify theoretical confusion: (true, partial, false or deceptive) cognate and (chance and 
semantic) false friend. The term “cognate” originates from cognatu(m) in Latin, which 
results from cum [with] and natus [born], thus meaning “born together”, i.e., having the 
same etymology. Cognates are etymologically related words across languages that 
“share (parts of) their orthographic and/or phonological form” (De Groot & Keijzer, 
2000, p. 3), leading to a similar spelling and/or pronunciation (Dijkstra et al., 2010). 
Therefore, two or more formally similar words that have the same origin and the same 
meaning in two or more languages should be called “true cognates” (e.g., colour 
[English] and color [Spanish], both from Latin color) (De Groot, 2011). Considering 
historically related words, Granger (1993) made a distinction between “good 
cognates” (i.e., true cognates), which have the same meaning, and “deceptive 
cognates”, which have partially or totally different meanings. Moreover, Sabino (2002) 
distinguished between “false cognates”, i.e. which have different meanings and etyma 
(e.g. ape [monkey in English, from Old Saxon ape] and ape [bee in Italian, from Latin 
apem]), and “deceptive cognates”, i.e., which have different meanings but the same 
etymon (e.g., library [“place from which books can be borrowed” in English] and 
librairie [bookshop in French], both from Latin librarium). Sabino (2016) also explained 
that the set theory could be used to represent these categories of cognates accurately. 
Suppose that A and B are two sets containing the meanings of two lexical items in two 
different languages. True cognates can be represented as equal sets (i.e., 𝐴𝐴 = 𝐵𝐵), false 
cognates as disjoint sets (i.e., 𝐴𝐴 ∩ 𝐵𝐵 = ∅), partial cognates as inclusion subsets (i.e., 
𝐴𝐴 ⊂ 𝐵𝐵 & 𝐴𝐴 ≠ 𝐵𝐵), and deceptive cognates as intersection sets (i.e., 𝐴𝐴 ∩ 𝐵𝐵 ≠ ∅). 
Finally, in case two words have a similar form but only share the same meaning in 
some contexts, Labat, Vandevoorde and Lefever (2019) considered them “partial 
cognates”. For example, argument means either dispute or a set of reasons in English, 
but only the second meaning is expressed by argumento in Spanish, although both 
words come from the Latin word argumentum. 

On the other hand, a commonly accepted term in translation and foreign-language 
learning literature is “false friend”, an umbrella term for lexical items with similar 
spellings or pronunciations, but different meanings since they have different semantic 
histories in their corresponding languages. De Groot (2011) subcategorised false 
friends based on the type of form overlap (i.e., phonological or orthographic) and the 
degree of form overlap (i.e., complete or for the larger part). In this regard, false 
friends that completely overlap in phonology or orthography are called interlexical 
homophones and interlexical homographs, respectively. On the other hand, false 
friends with a large phonological or orthographic overlapping are called interlexical 
homophonic neighbours and interlexical homographic neighbours, respectively. 
Dominguez and Nerlich (2002) drew a distinction between “chance false friends” (i.e. 
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false cognates) and “semantic false friends” (i.e,. partial and deceptive cognates). In 
turn, semantic false friends can be divided into two groups: full false friends (i.e., 
deceptive cognates), where the meanings of two words have diverged widely (e.g,. 
fastidious [English] and fastidioso [Spanish]), and partial false friends (i.e. partial 
cognates), where some of the meanings of the words are different but others remain 
the same (e.g., professor [English] and profesor [Spanish]). 

As in most NLP studies about this topic, our research does not consider the 
etymology of words. Therefore, we focus on two binary classification tasks: the first 
one, cognate detection, where orthographically similar words in different languages are 
found, and the second one, cognate classification, where the challenge lies in 
recognising whether such words are translation equivalents (i.e., true cognates) or not 
(i.e., partial, false or deceptive cognates: false friends). 

2. Related work 

Most of the work aimed at identifying true cognates and false friends is based on 
some model that determines the similarity between words in different languages. The 
main difference lies in the type of similarity (i.e., orthographic, phonetic, semantic, or 
a combination of them), and the type of resources that provide evidence to assess 
such similarities (e.g., corpora, dictionaries, and thesauri). 

On the one hand, Schepens et al. (2012), who studied the distribution of cognates 
in six European languages, adopted the orthographic approach to cognate recognition. 
In particular, they performed two steps: extracting word pairs directly from a 
translation lexicon, and classifying the extracted pairs as cognates or non-cognates 
based on orthographic similarity. A popular technique to assess orthographic similarity 
is the Levenshtein Distance (Levenshtein, 1965), which counts the minimal number of 
substitutions, insertions, and deletions required to edit one string into another. The 
problem of this metric lies in the fact that it computes high scores for long words and 
low scores for short words, so it was modified to become the Normalised Levenshtein 
Distance, as found in Inkpen and Frunza (2005) or Schepens et al. (2012), among 
others. Another effective technique is the Longest Common Subsequence Ratio 
(LCSR) of two tokens, which is “the ratio of the length of their longest (not 
necessarily contiguous) common subsequence (LCS) and the length of the longer 
token” (Melamed, 1999, p. 113). 

On the other hand, one of the most representative works of the phonetic approach 
is Kondrak (2000), who devised an algorithm for aligning phonetic sequences 
(ALINE). Indeed, it was used to detect cognates by assigning a similarity score to 
pairs of phonetically transcribed words, where each phoneme was represented as a 
vector of phonetically based feature values. Kondrak and Dorr (2004) enhanced 
ALINE with orthographic evidence to increase accuracy in the task of cognate 
recognition. Palmero Aprosio et al. (2020) explained that orthographic similarity 
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proves effective for typologically similar languages, but some phonetic similarity 
technique is required when the words involved belong to languages that do not share 
the same writing system. 

Finally, the semantic approach to cognate recognition usually determines similarity 
based on information from corpora and knowledge bases, apart from relying on 
orthographic and phonetic evidence. For example, distributional information can be 
obtained through the local context in which candidate cognates occur in corpora. 
Through this approach, a lexical item that appears in a specific context can have a true 
cognate if the other word in the pair occurs in a similar context, hence extensive 
corpora are required. Moreover, information from knowledge bases, e.g., WordNet 
(Fellbaum, 2010), serves to determine the semantic similarity between two candidate 
cognates by considering their presence in glosses (e.g., Kondrak, 2001) or their 
position in a hierarchical taxonomy (e.g., Mitkov et al., 2007; Mulloni et al., 2007). 
Some of the most representative works are described as follows. 

Brew and McKelvie (1996) detected a large number of English–French word pairs 
based on their occurrence in similar local contexts in a multilingual, non-annotated 
corpus of parliamentary questions, and then identified cognates and false friends 
relying on orthographic similarities. 

Kondrak (2001) combined ALINE with a procedure that considers WordNet-
based semantic similarity between words by analysing the information extracted from 
glosses. 

In Mulloni et al. (2007), cognate recognition started with a purely orthographic 
approach and then leveraged semantic evidence from thesauri and monolingual 
corpora. Orthographically similar word pairs were detected through transformation 
rules. Semantic similarity resulted from combining the taxonomic similarity computed 
from EuroWordNet (Vossen, 1998) with the distributional similarity from corpora. 

Nakov et al. (2007) detected true cognates and false friends relying solely on 
semantic similarity, ignoring orthographic or phonetic evidence. In particular, they 
collected semantic information about the local context of candidates by using the Web 
as a corpus, rather than pre-existing corpora, and a bilingual glossary, where word 
translations serve as cross-linguistic “bridges”. Contextual semantic vectors were 
compared to assess semantic similarity. 

In Mitkov et al. (2007), candidate pairs were extracted through distributional 
evidence from non-parallel bilingual corpora, and then the extracted pairs were 
classified as true cognates or false friends through semantic evidence. Whereas 
extraction was based on orthographic similarity, classification was based on semantic 
similarity, considering the path length of the word pair in EuroWordNet and word co-
occurrences in corpora. 
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In the last few years, static word embeddings have played a significant role in 
distinguishing false friends from cognates in a bilingual space, where cognates are 
expected to be closer in the space and false friends much more distant. In 
computational semantics, word embeddings, i.e., distributional vectors created with 
neural networks, are currently the dominant model to represent lexical meaning. 
Words are represented as real-valued numbers in vectors, with each number capturing 
a dimension of the meaning of each word, allowing semantically related words to be 
mapped to proximate points in the vector-space model. Indeed, word-vector models 
can be trained from two different approaches: count models and predictive models 
(Baroni et al., 2014). On the one hand, distributed semantic models can capture the 
importance of contexts by using linear algebra on word-to-word co-occurrence 
counts. On the other hand, predictive models, or neural-network models, use a non-
linear function of word co-occurrences, where word embeddings capture more 
complex information than merely co-occurrence counts. According to Mandera et al. 
(2017), predictive models are much more psychologically grounded than count models 
because the underlying principle of implicitly learning how to predict a word from 
other words is consistent with biologically inspired models of associative learning.  

Popular neural-network models for obtaining static word embeddings include 
Word2Vec (Mikolov et al., 2013), which contains a single hidden layer that, for each 
input word, returns the probability that the other words in the corpus belong to its 
context; GloVe (Pennington, et al., 2014), which builds word embeddings by 
considering the frequency of co-occurrences across the entire corpus; and FastText 
(Bojanowski et al., 2017), which enriches Word2Vec embeddings with sub-word 
information using bags of character n-grams. Static word embeddings have been lately 
explored to enhance deep-learning language models, leading to a breakthrough in 
natural language understanding (Periñán-Pascual, 2022). As of late, with the advent of 
Transformers such as BERT (Devlin et al., 2019) and other Large Language Models 
(LLMs), there is an open line of research into contextualised embeddings, which 
consider the linguistic meaning of nearby tokens in a given sentence. 

Static word embeddings enhanced cognate recognition when cross-lingual word-
embedding mapping was performed, initially used to generate bilingual dictionaries. 
These mapping methods, most of which are supervised and employ a small seed 
dictionary to learn the mapping (e.g., Mikolov et al., 2013; Smith et al., 2017), can align 
two sets of embeddings trained independently on monolingual corpora into a shared 
space. In this context, the challenge is to devise a fully unsupervised method so that 
parallel data from a bilingual dictionary or a sentence-aligned corpus is not required. 
To this end, Conneau et al. (2018) used adversarial learning to generate a rotation 
matrix, where the resulting space was then refined via Procrustes and its density was 
adjusted. Artetxe et al. (2018) combined an initial weak mapping that exploits the 
structure of the embedding spaces with a self-learning approach that, starting from the 
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initial solution, iteratively improves the mapping. Wang, Henderson and Merlo (2019) 
proposed a weakly supervised adversarial-training method, where cross-lingual 
mapping was performed at the concept level through aligned Wikipedia articles rather 
than at the word level. Few studies have recently attempted to use word embeddings 
in the context of cognate recognition, as described below. 

Castro et al. (2018) constructed vector spaces from the Spanish and Portuguese 
Wikipedia with Word2Vec and then used WordNet as the bilingual lexicon to align 
both vector spaces applying the technique described in Mikolov et al. (2013). Finally, 
they employed Support Vector Machines (SVMs) to classify word pairs as cognates or 
false friends. This supervised binary classifier was trained with several features based 
on the cosine distances between source and target vectors. 

Merlo and Rodriguez (2019) explored two models, i.e., Artetxe et al. (2018) and 
Wang et al. (2019), to demonstrate that the structure of the cross-lingual word-
embedding space yields the same similarity effects as the human bilingual lexicon. 

Labat and Lefever (2019) applied SVM to identify cognates by combining 
orthographic similarity features from fifteen metrics with semantic information from 
word embeddings. Particularly, they employed FastText to get monolingual word 
embeddings for Dutch and English. After aligning them into a common vector space 
based on the model proposed by Smith et al. (2017), cosine similarity between the 
embeddings of the source and target words was computed and then introduced in the 
classifier. Lefever et al. (2020) extended this preliminary work in several aspects. For 
example, they incrementally re-trained the FastText embeddings with corpus-specific 
information, used a more advanced embedding mapping method, such as Artetxe et 
al. (2018), and combined orthographic and semantic features through a multi-layer 
perceptron. 

Palmero Aprosio et al. (2020) used Word2Vec and FastText embeddings. First, 
candidate cognates were extracted from a corpus with the help of a monolingual 
dictionary in another language and several orthographic similarity metrics. Second, 
candidates were recognised as true cognates or false friends by an SVM classifier, 
trained with semantic features obtained from aligned multilingual spaces, synonym 
lists, and bilingual dictionaries. 

Uban et al. (2019) employed the publicly available multilingual aligned matrices 
constructed by Smith et al. (2017).11 In the mapping process of 78 languages to a 
single common space, Smith et al. (2017) aligned all monolingual FastText word 
embeddings directly to the English vectors, so they did not rely on training 
dictionaries between non-English language pairs. Uban et al. (2019) quantified the 
semantic divergence of cognate word pairs through the cosine distance between 
source and target words in this shared embedding space so that the degree of falseness 
was measured as follows in Equation (1): 
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(1) Degree of falseness = distance(c1, w2) – distance(c1, c2) 

In this equation, (c1, c2) is a cognate pair, i.e., c1 is a word in the source language 
and c2 is in the target language. If a word w2 in the target language is semantically 
closer to c1 than c2 in the shared semantic space, the cognates can be considered false 
friends. 

Finally, Uban and Dinu (2020) used the same procedure described above but with 
FastText multilingual pre-aligned embeddings constructed by Conneau et al. (2018).2 

3. Proposed method 

Our study was influenced by Taylor (2012), who explored the notions of E-
language (external language) and I-language (internal language). On the one hand, a 
language can be seen as an “external” object, i.e., a set of linguistic realisations, an 
approach endorsed by Bloomfield (1926). On the other hand, a language can be 
considered an “internal” object, i.e., lexical and grammatical knowledge that resides in 
speakers' minds, a cognitive turn initiated by Chomsky's (1957) generative model. 
Taylor (2012) supported the idea that both models are closely aligned. This distinction 
of linguistic objects can result in the construction of two types of language resources: 
text corpora, which exemplify the external approach, and lexical associative networks, 
which represent the internal approach. 

In psycholinguistics, De Deyne et al. (2016) suggested that, when people judge 
semantic associations, they tend to rely more on lexical networks than on the 
distributional properties of an external language model. For example, yellow and banana 
rarely co-occur in text corpora because most bananas are yellow, so mentioning yellow 
together with banana is uninformative. However, yellow and banana are strongly 
associated in WordNet as shown in their high semantic similarity. In this context, this 
study aims to compare the capacity of three types of knowledge (i.e., corpus-based 
knowledge, semantic knowledge, and commonsense knowledge) to detect true 
cognates and false friends in English and Spanish. To this end, we leveraged pre-
trained word embeddings from different types of knowledge sources so that our 
research method can be easily applied to other languages. 

On the one hand, we employed FastText embeddings (Bojanowski et al., 2017) to 
analyse semantic similarity in a corpus-based model, which is grounded on the 
knowledge derived from the distributional patterns of words. In our experiment, we 
employed publicly available FastText embedding matrices of English and Spanish, 
each one containing 2M tokens and 300 dimensions trained on Wikipedia and the 
Common Crawl corpus, which contains petabytes of data collected in fifteen years of 
web crawling.3 The models were trained using CBOW with character n-grams of 
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length 5, a window of size 5 and 10 negatives. FastText learns word representations by 
considering sub-word information. In particular, this method incorporates character 
n-grams into the Skip-gram architecture of Word2Vec, where the representation of 
words finally results from the sum of the n-gram vectors. As this model was trained 
with a collection of textual expressions, it reflects the E-language of speakers. 

On the other hand, the network-based model aims to construct word embeddings 
from the semantic structure of knowledge bases without any corpus evidence, where 
relational information is exploited by graph-based methods, considering word senses 
as nodes and semantic relations between senses as edges. To this end, we constructed 
WordNet embeddings with the Wnet2vec method (Saedi et al.,  2018), using the 
English WordNet 3.0 (Fellbaum, 2010)4 and the MCR Spanish WordNet 3.0 datasets 
(Agire et al., 2012).5 As human experts constructed WordNet relying on existing 
lexicographic sources and introspection, it reflects the I-language of speakers. Saedi et 
al. (2018) proposed an effective method to re-encode semantic networks into word-
embedding matrices based on the intuition that the larger the number of paths and the 
shorter the paths connecting two nodes in the ontological graph, the stronger their 
semantic affinity. In this conversion, different semantic relations are considered 
among all parts of speech, where identical weight is given to each relation. Moreover, 
Positive Pointwise Mutual Information is used to reduce the bias introduced by highly 
polysemous words. After each vector is L2-normalised, Principal Component Analysis 
reduces the size of the vectors. Saedi et al. (2018, p. 129) reported that “the 
performance of wnet2vec was around 15% superior to the performance of word2vec” 
when “evaluated under the mainstream task of determining the semantic similarity of 
words arranged in pairs”, thus demonstrating that some semantically related words do 
not co-occur in relevant contexts. 

Finally, hybrid models combine the knowledge in corpus-based distributional 
representations and the relational information extracted from knowledge bases. In this 
regard, LessLex6 (Colla et al., 2020) was constructed from two primary resources: 
BabelNet and ConceptNet Numberbatch. On the one hand, BabelNet (Navigli & 
Ponzetto, 2012) is a semantic network resulting from the integration of lexicographic 
and encyclopaedic knowledge from WordNet and Wikipedia, where word senses are 
represented as synsets. On the other hand, ConceptNet Numberbatch (Speer et al., 
2017) was built through an ensemble method combining the embeddings produced by 
GloVe and Word2vec with the structured knowledge from the semantic networks 
ConceptNet (Havasi et al., 2007) and the Paraphrase Database (Ganitkevitch et al., 
2013). ConceptNet Numberbatch word embeddings were taken as the starting point, 
as vectors are mapped onto a single shared multilingual semantic space covering over 
seventy-eight different languages. Averaging vectors from the above resources, 
LessLex finally contains embeddings for senses rather than for terms, allowing us to 
compute the distance between a term and each of its corresponding senses. Therefore, 



324  PERIÑÁN-PASCUAL & FERNÁNDEZ-MARTÍNEZ 

LessLex integrates corpus-based knowledge from Wikipedia, semantic knowledge 
from WordNet, and commonsense knowledge from ConceptNet. It should be noted 
that, in our experiment, we did not only leverage LessLex sense embeddings, each 
corresponding to a BabelNet ID, but also converted them into word embeddings for 
English and Spanish. In the case of polysemous words, i.e., a word in a given language 
linked to more than one BabelNet ID, word embeddings were computed from the 
average of the vectors involved in the different senses. 

Moreover, we assessed the impact of cross-lingual embedding alignment in 
semantic similarity discovery, whereby English and Spanish matrices were projected 
onto a shared space in an unsupervised fashion following Artetxe et al.'s method 
(2018). In this way, two monolingual matrices projected onto the same space can be 
merged into a single bilingual word-embedding matrix. 

Table 1 summarises the experiment conducted in this study, where we evaluated 
six different models through nine word-embedding matrices to automatically 
recognise true cognates and false friends. 

Table 1 

Word-embedding models employed in the experiment. 

Model type Unaligned model Aligned model 
Corpus-based 
model 

Two monolingual FastText matrices 
(Model I) 

One bilingual FastText matrix 
(Model IV) 

Network-based 
model 

Two monolingual Wnet2vec matrices 
(Model II) 

One bilingual Wnet2vec matrix 
(Model V) 

Hybrid model Two monolingual LessLex matrices 
(Model III) 

One bilingual LessLex matrix 
(Model VI) 

 

The basic premise of the above models is that lexical meaning results from the sum 
of word senses, as the experiment is conducted with out-of-context words. In this 
regard, an issue often discussed in relation to word-embedding models is what 
Camacho–Collados and Pilehvar (2018) called “meaning conflation deficiency”. 
Specficically, such models do not discriminate among different senses of a word, as 
each word type has a single word vector, so polysemy and homonymy are ignored. As 
a result, multi-sense embedding models are constructed to deal with the meaning 
conflation deficiency of word embeddings (Iacobacci et al., 2015; Ruas et al., 2019). 
However, Kober et al. (2017) demonstrated that a single vector that conflates the 
different senses of a polysemous word is sufficient for recovering sense-specific 
information and thus discriminating the meaning of a word in context in tasks such as 
word-sense disambiguation. For this reason, we also aimed to determine whether an 
independent representation for each word sense in a vector-space model could 
contribute to improving the recognition of true cognates and false friends. To this 
end, we employed LessLex sense embeddings (Model VII) in contrast to monolingual 
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and bilingual matrices in Model III and Model VI, which are grounded on LessLex 
word embeddings. 

4. Experiment 

The purpose of the experiment was to assess the capability of the seven models 
described in Section 3 to automatically detect true cognates and false friends in a test 
dataset. To achieve this, we created the test dataset as a gold standard, taken as the 
ground truth, from two lists of cognate word pairs in English and Spanish (i.e., a list 
of 3,861 true cognates and another of 430 false friends) compiled for Foreign 
Language Teaching by Rubén Morán.7 Our test dataset consisted of 1,164 English-
Spanish word pairs, including 582 orthographically similar word pairs (i.e., 291 true 
cognates and 291 false friends) and 582 word pairs randomly created from the 
vocabulary involved in the true cognates and false friends. The selection of such 
cognates from the original lists was based on the criteria of balance and coverage, i.e., 
(a) a balanced proportion not only between cognates and non-cognates but also 
between true cognates and false friends, and (b) the coverage of all selected words in 
the FastText, Wnet2vec and LessLex word-embedding matrices. Moreover, the 
original matrices were finally preprocessed to facilitate the comparison, resulting in 
300-dimensional matrices that only contained the word embeddings corresponding to 
575 English words and 563 Spanish words in the test dataset. Accordingly, bilingual 
aligned matrices consisted of 1,138 vectors. 

The experiment was conducted in two stages. First, we performed the 
orthographic similarity (OS) analysis of word pairs, which was based on the 
Normalised Levenshtein Distance (NLD) between the source and target words in 
each pair in the test dataset, as in Equation (2). 

(2) OS=1-NLD, where NLD= distance
length

, 

distance = min(number of insertions, deletions and substitutions), and 

length = max(length of source word, length of target word) 

In NLD, the Levenshtein Distance, which represents the minimum number of 
insertions, deletions, and substitutions of one character for another when 
transforming one word into the other, is divided by the maximum length of both 
words. As OS is a symmetric measure, the source word can be in English or Spanish, 
irrespectively. The goal of this stage was to determine the optimal threshold above 
which the metric yielded the best performance based on binary classification. In other 
words, we used OS scores as threshold values, ranging from 0 to 1 in increments of 
0.05. Then, we determined whether each word pair in the test dataset could be 
classified as cognate or non-cognate according to a given threshold. 
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With respect to evaluation metrics for binary classification, it should be recalled 
that most of them are built over a 2x2 contingency matrix—as shown in Table 2, 
where TP, FP, FN and TN denote the number of true positives, false positives, false 
negatives, and true negatives, respectively. 

Table 2 

Contingency matrix for binary classification. 

 Expected (Ground Truth) 
Are the words in the pair really 
cognates? 
yes no 

Predicted Were the words in the pair classified as 
cognates? 

yes TP FP 
no FN TN 

 

Using the information from this contingency matrix, we employed the popular 
measure of Accuracy, which represents the proportion of correctly classified samples 
(i.e., word pairs) from the total number of samples (i.e., both positive and negative 
classes), as in Equation (3). 

(3) Accuracy= TP+TN
TP+TN+FP+FN

 

Given the relative balance of our test dataset, Accuracy could be an appropriate 
metric. However, it does not guarantee an adequate assessment of the overall 
effectiveness of the model, as the accuracy paradox reveals that “high accuracy is not 
necessarily an indicator of high classifier performance” (Valverde-Albacete & Peláez-
Moreno, 2014, p. 2). Indeed, it is misleading to interpret results as accurate when the 
impact of errors (i.e., false positive and false negative) is minimised, even though they 
are critical factors to be considered when evaluating classifiers. 

Accordingly, we also employed typical evaluation metrics that come from 
information retrieval, such as Precision (Equation 4), Recall (Equation 5), and F1 
(Equation 6). 

(4) Precision= TP
TP+FP

 

(5) Recall=Sensitivity= TP
TP+FN

 

(6) F1= 2*Precision*Recall
Precision+Recall

 

Precision represents the proportion of correctly classified positive samples to the 
total number of samples classified as positive, either correctly or incorrectly. 
Therefore, the higher the Precision, the fewer incorrect positive classifications. Recall 
(sensitivity) represents the ratio of correctly classified positive samples to the total 
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number of positive samples. Therefore, the higher the Recall, the more positive 
samples recognised. F1 represents the harmonic mean of Precision and Recall. 
Therefore, F1 estimates the relative impact of the errors caused by FPs (Precision) and 
the errors caused by FNs (Recall) on the model under evaluation. After determining 
the optimal threshold based on F1, this stage returned a list of word pairs whose OS 
scores were above a particular cutoff. 

Second, we performed the semantic similarity (SS) analysis of word pairs based on 
the seven models, where a cosine similarity score was computed for each candidate 
recognised in the previous stage. We used SS scores as threshold values, ranging from 
0 to 1 in increments of 0.05. The goal of this stage was to determine the optimal 
threshold above which SS yielded the best performance based on Accuracy, Precision, 
Recall, and F1. 

However, F1 is not an efficient metric to test model effectiveness if we also intend 
to consider TNs. In this regard, Specificity (Equation 7) is a relevant measure which 
expresses the ratio of correctly classified negative samples to the total number of 
negative samples. Moreover, we employed three popular measures that combine 
Sensitivity (Recall) and Specificity, giving a comprehensive evaluation of the overall 
performance of the model: Youden’s Index (Equation 8), Likelihood Ratio (Equation 
9 and 10), and Diagnostic Odds Ratio (Equation 11), which originated in medical 
diagnosis to analyse tests. 

(7) Specificity= TN
FP+TN

 

(8) YI=Sensitivity+Specificity-1 

(9) LR+= Sensitivity
1-Specificity

 

(10) LR-= 1-Sensitivity
Specificity

 

(11) DOR= LR+
LR-

 

Youden's Index (YI) gives equal weight to FPs and FNs. Therefore, when two 
models have the same YI, they have the same proportion of total misclassified 
samples. A high value of YI indicates a better ability to avoid failure, so 1 indicates 
that there are no FPs or FNs, and thus the classifier is perfect. Likelihood Ratio (LR) 
represents how likely samples are assigned a given category. The higher the value, 
which ranges from 0 to infinity, the more likely they have the category. In particular, 
Positive Likelihood Ratio (LR+) and Negative Likelihood Ratio (LR-) represent the 
extent to which positive and negative predictions, respectively, indicate the outcome 
will be positive. Therefore, high LR+ and LR- mean better performance in positive 
and negative classes, respectively. For example, if LR+ is 0.7, the model is moderately 
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good to very good at classifying the positive class. That is, 0.7 indicates that positive 
prediction is 0.7 times more likely to be positive cases than negative cases. Conversely, 
if LR- is 0.3, it is less helpful when ruling out negative cases. That is, 0.3 indicates 
negative predictions are 0.3 times as likely to be positive cases than negative cases. 
LR+ and LR- are combined into one measure, i.e., Diagnostic Odds Ratio (DOR), 
which represents the ratio between LR+ and LR-. The higher the DOR value, which 
ranges from 0 to infinity, the more indicative of good performance. Therefore, a value 
greater than 1 means that the classifier is valid, 1 means that the model does not 
provide useful information, and a value less than 1 indicates that the model predicts in 
the wrong direction. In conclusion, these three measures were critical when 
comparing the models and determining which model is preferable. 

However, no single measure of the above is grounded on the four values in the 
confusion matrix. For this reason, we also applied Matthews Correlation Coefficient 
(MCC), which computes a high score only if the classifier correctly predicts most of 
the positive samples and most of the negative samples, and if most of its positive 
predictions and most of its negative predictions are also correct. MCC measures the 
correlation of the expected classes (i.e., ground truth) with the predicted classes, as in 
Equation (12). 

(12) MCC= TP×TN-FP×FN

�(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 

MCC returns a value from -1 to +1, where +1 describes a perfect prediction, 0 
represents a random prediction, and -1 describes a perfectly wrong prediction (i.e., 
predicted and expected values completely disagree). Recent scientific studies (Chicco 
& Jurman, 2020; Chicco et al., 2021a; Chicco et al., 2021b) have shown that MCC is 
more reliable than Accuracy, F1, Youden's Index, and DOR in binary classification 
evaluation. Except for LR, DOR and MCC, the other evaluation measures compute a 
score ranging from 0 to 1, where 0 is a poor result, and 1 represents the perfect 
outcome. 

To conclude, Figure 1 illustrates the process of cognate detection and 
classification. 
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Figure 1 

Cognate detection and classification. 

 

The pipeline in Figure 1 works as follows: first, the task of cognate detection is 
performed with an unsupervised orthographic approach based on OS between a given 
pair of words through the NLD. Then, after finding the best threshold, the task of 
cognate classification is carried out for orthographically similar words to distinguish 
true cognates from false friends (i.e., partial, false, and deceptive cognates). Cognate 
classification is performed with the semantic similarity measure using different 
unsupervised embedding-based models, selecting the threshold that gives the highest 
performance for each approach. 

5. Results 

In the first stage of the experiment, we performed cognate detection to evaluate 
the capability of the system to differentiate between cognates and non-cognates based 
on OS (Model 0). In the second stage of the experiment, we selected the word pairs 
recognised as orthographically similar in the first stage, particularly those obtained 
from the threshold with the best performance (i.e., cutoff 0.4), to perform cognate 
classification. In other words, we then evaluated the capability of the system to 
differentiate between true cognates and false friends based on SS from various 
models. Table 3 presents the best evaluation results for each model with respect to F1, 
where we point out the highest F1 score in bold. We also tested other aspects of 
model effectiveness to complement the above results. Table 4 shows the scores 
computed by YI, LR+, LR-, DOR, and MCC for the same cutoffs presented in Table 
3. 
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Table 3 

Best evaluation results. 

Task Model Cutoff Accuracy Precision Recall F1 
Cognate detection 0 0.4 0.984 0.980 0.988 0.984 

Cognate classification 

I 0 0.486 0.486 1 0.654 
II 0 0.486 0.486 1 0.654 
III 0.95 0.856 0.825 0.789 0.807 
IV 0.55 0.813 0.776 0.863 0.817 
V 0 0.486 0.486 1 0.654 
VI 0.8 0.777 0.719 0.888 0.794 
VII 1 0.722 0.641 0.975 0.773 

 

Table 4 

Best evaluation results [continued]. 

Task Model YI LR+ LR- DOR MCC 
Cognate detection 0 0.967 47.961 0.012 3996.750 0.967 

Cognate classification 

I 0 1 - - - 
II 0 1 - - - 
III 0.687 7.692 0.235 32.732 0.693 
IV 0.628 3.672 0.179 20.514 0.630 
V 0 1 - - - 
VI 0.560 2.708 0.167 16.216 0.571 
VII 0.459 1.888 0.051 37.02 0.522 

 

6. Discussion 

The first stage of the experiment, related to cognate detection, demonstrated that 
the most reliable list of orthographically similar word pairs was automatically 
constructed with a threshold of 0.4. Indeed, the orthographic approach outperformed 
the semantic approach in the nine metrics, where not only Accuracy and F1 (i.e., 
0.984), but also YI and MCC (i.e., 0.967) revealed that the classifier is close to being 
perfect. The second stage of the experiment, which explored cognate classification, 
demonstrated the impact of matrix projection together with the type of knowledge to 
recognise true cognates and false friends. On the one hand, we discovered that 
working with unaligned matrices does not tend to provide good results, as shown by 
the Accuracy scores obtained with Model I and Model II. Table 3 shows that the 
highest F1 in Model I and Model II (0.654 with a threshold of 0) is the lowest among 
all models. Considering this cutoff in both models, which produces the lowest 
Accuracy (0.486), Table 4 shows that YI is 0, and LR-, DOR and MCC cannot even 
be calculated, so these classifiers are not valid. This evidence proves that FastText and 
Wnet2vec unaligned matrices are not useful for the cognate classification task. We 
attribute this inefficiency to the lack of alignment of the matrices involved, as 
semantic representations are compared from different vector spaces. However, Model 
III, which is supposed to have no cross-lingual word-embedding mapping, is one of 
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the best models. The issue is that LessLex word embeddings were generated from 
sense embeddings, so Model III is inherently aligned as semantic representations of 
translation equivalents in two different languages (i.e., words of the same WordNet 
synsets) originated from the same conceptual representations. 

On the other hand, we discovered that aligned embeddings could improve 
evaluation results only when vectors were derived from corpora. Indeed, the F1 score 
of Model IV (FastText) is the highest among all models (Table 3). Moreover, model 
effectiveness metrics such as YI, LR+, LR-, DOR, and MCC revealed that the 
projection to a shared space proved beneficial (Table 4). However, the evaluation 
results of Model V (i.e., aligned Wnet2vec matrix) are similar to those of Model II (i.e., 
unaligned Wnet2vec matrices), where not only Accuracy and F1 (Table 3), but also YI 
(Table 4) revealed that Model V is not suitable for our task. Therefore, we conclude 
that models based on semantic networks (e.g., WordNet) do not contain sufficient 
information to recognise true cognates and false friends. In the case of Model VI, 
cross-lingual projection did not produce better results with LessLex word 
embeddings, i.e., 0.794 in F1 (cutoff 0.8). Although such results are reasonably good, 
all metrics on model effectiveness revealed that Model VI is not superior to III (Table 
4). Again, this supports the idea that we tried to align vectors within an already shared 
semantic space. 

Moreover, we closely examined the models with the best performance in the 
second stage of the experiment: Model III, with two unaligned monolingual matrices 
based on corpus-based, semantic, and commonsense knowledge, and Model IV, with 
a single matrix that contains aligned bilingual embeddings constructed from corpora. 
On the one hand, Model III outperforms Model IV and all the other models in this 
stage in terms of Accuracy and Precision (0.856 and 0.825, respectively), where the 
optimal threshold of 0.95 contributes to providing the lowest Recall (0.789). On the 
other hand, Model IV is superior to Model III in Recall and F1 (0.863 and 0.817, 
respectively), where the optimal threshold of 0.55 contributes to improving Recall at 
the expense of Precision (0.776). Therefore, only after examining the model 
effectiveness metrics in Table 4, we were able to establish the best model, revealing 
that Model III yielded the highest YI, DOR, and MCC scores. Moreover, Model III 
produced the highest LR+ and LR-, which implies that this model is superior for 
confirming positive samples, being in line with the goal of our task.  

Finally, LessLex word embeddings (Model III and Model VI) outperformed 
LessLex sense embeddings (Model VII) in terms of Accuracy, Precision, F1, i.e., 
0.722, 0.641, and 0.773, respectively. Moreover, Model VII was one of the least 
effective models, as shown by YI, LR+, LR-, and MCC (i.e., 0.459, 1.888, 0.051, and 
0.522, respectively). This shows that independent representation for each word sense 
in a vector-space model could not improve the recognition of true cognates and false 
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friends, a task performed out of context. Therefore, we conclude that meaning 
conflation deficiency did not affect performance. 

CONCLUSIONS 

True cognates and false friends have sparked research interest in fields such as 
applied linguistics and NLP. Due to their ever-growing importance and the time-
consuming and labour-intensive task of manually curating lists of cognates and false 
friends, it becomes essential to develop automatic means to compile and evaluate such 
lists. Thus, our contribution is to fill this gap by assessing the impact of three aspects 
of unsupervised embedding-based models (i.e., language resource type, cross-lingual 
embedding alignment, and meaning conflation) in the semantic-similarity stage of the 
cognate classification task of distinguishing true cognates from false friends with 
English and Spanish words. The results of our experiments indicate that (i) the best 
model is the LessLex word-embedding model, based on corpus-based, semantic, and 
commonsense knowledge, which does not benefit from cross-lingual embedding 
alignment because it already contains built-in multilingual knowledge; (ii) cross-lingual 
matrix embedding alignment significantly improved the performance of our corpus-
based word-embedding model (i.e., FastText word-embedding model) in the cognate 
classification task but did not offer any improvement in the network-based model (i.e., 
WordNet word-embedding model); and (iii) meaning conflation deficiency did not 
negatively affect the performance of any of the word-embedding models. These 
results support the excellent predictive capabilities of fully unsupervised approaches 
based on word embeddings. Our experiment could provide a basis for future research 
in cross-lingual alignment tasks related to NLP, such as semantic similarity or machine 
translation, or in foreign language learning, by helping to construct lists of cognates 
automatically. Other lines of research could focus on the evaluation of lists of 
cognates and false friends for pairs of languages other than English and Spanish to 
investigate whether the same results may apply by using a multilingual database of 
cognates, e.g., the CogNet database (Batsuren et al., 2022). We also plan to make use 
again of novel NLP resources, such as monolingual transformer-based embeddings 
like BERT (Devlin et al., 2019) and multilingual transformer-based embeddings like 
XLM-RoBERTa (Barbieri et al., 2021), which have shown promising results in 
semantic similarity tasks with respect to more traditional methods (Chandrasekaran & 
Mago, 2022). Finally, we intend to employ advanced techniques in prompt engineering 
with open-source LLMs for cognate classification, saving computational costs and 
time, and thus addressing ecological and cost-efficiency concerns. 
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